

Department Vision

To become a leading center of excellence in Computer Science and Engineering (Data Science), empowering students with advanced knowledge, ethical values, and innovative skills to address real-world challenges and contribute meaningfully to the global data-driven society.

Department mission

- To nurture future-ready professionals in Data Science by integrating theoretical knowledge with industry practices through advanced infrastructure, cutting-edge technologies, and experiential learning.
- To instill ethical values, integrity, and social responsibility in students, enabling them to make meaningful contributions to society through ethical decision-making.
- To foster creativity, innovation, and interdisciplinary research, empowering students to transform data into actionable insights and address real-world challenges.

Program Educational Objectives

- PEO 1: To prepare our students to find suitable employment commensurate with their qualification.
- PEO 2: To create good entrepreneurs who may contribute to the nation building and generate job opportunities for others.
- PEO 3: To develop proficiency in students for higher studies and R & D for the solution of complex problems for betterment of the society.
- PEO 4: To develop students as responsible citizens with high moral and ethical values who can become asset to a vibrant nation.

Program Specific Outcomes

- PSO 1: Apply computational, statistical, and machine learning techniques to analyze and interpret complex data, developing innovative solutions for real-world challenges in diverse domains.
- PSO 2: Design and implement data-driven systems with ethical considerations, ensuring transparency, fairness, and social responsibility in decision-making processes.
- PSO 3: Engage in interdisciplinary research, lifelong learning, and innovative practices to contribute to advancements in Data Science and emerging technologies.

Program Outcomes

PO 1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO 2: Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO 4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

PO 5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO 6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

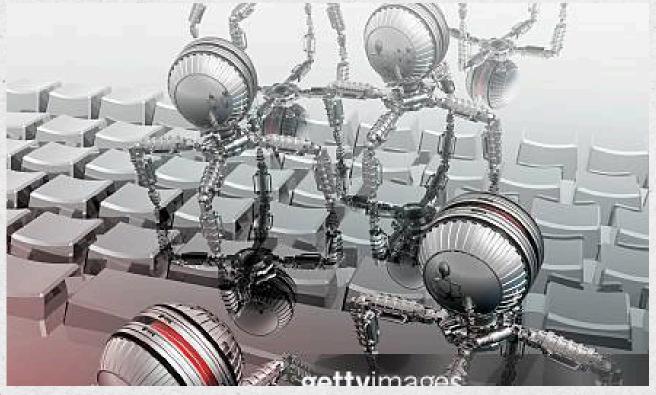
PO 7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice

PO 9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO 11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

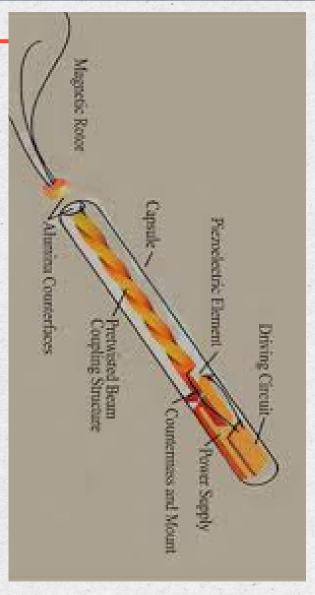

PO 12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Opening hook

Imagine machines so tiny they can travel through blood vessels and repair cells from within. What if these miniature robots could diagnose diseases earlier than any physician and deliver medications precisely where needed—all at a scale invisible to the naked eye? Welcome to the revolutionary realm of nanobots, where science fiction rapidly becomes scientific reality.

Why This Topic Matters?

Nanobots are poised to transform medicine, manufacturing, environmental science, and more. Unlike any technology before, they can work at the atomic and molecular level, paving the way for targeted drug delivery, real-time diagnostics, efficient pollution cleanup, and novel materials. Their potential to solve persistent, large-scale challenges is propelling research and investment globally, promising breakthroughs that will redefine healthcare, industry, and environmental management.



Topic	Page Number
Introduction to Nanobots	1
Key Principles of Nanobots	3
Algorithms Used in Nanobots	4
Some Applications of Nanobots	5
Machine Learning	7
Nanobots in Climate and Weather Prediction	8
Current Development in Nanobots	9
Future Possibilities and Challenges	10
Ethical Concerns in Quantum Computing	11
Recap of Our Quantum Journey	12
Final Thoughts	13
Faculty Coordinator	14
Student Coordinators	15

1.Introduction to Nanobots

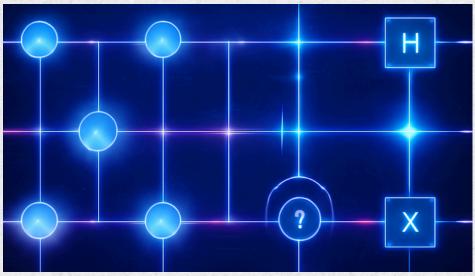
1.1What are nanobots?

Nanobots are ultra-small machines built at the scale of nanometers—thousands of times thinner than a human hair. Designed to work at the molecular level, they can deliver medicines directly to cells, repair tissues, and even detect diseases early. Beyond healthcare, nanobots also hold promise for cleaning the environment, repairing microchips, and transforming industries, making them one of the most exciting frontiers of modern science.

- A nanobot is so small that about 1,000,000 nanobots can fit on the tip of a pin.
- The term nanotechnology was first popularized by Norio
 Taniguchi in 1974.
- Nanobots can be designed to move through the human bloodstream to deliver drugs exactly where needed.
- Scientists are experimenting with nanobots that can repair damaged DNA inside cells.
- Red blood cells are about 7,000 nanometers wide, while some nanobots are only 100 nanometers or less.

"The tiniest robots with the biggest ambitions."

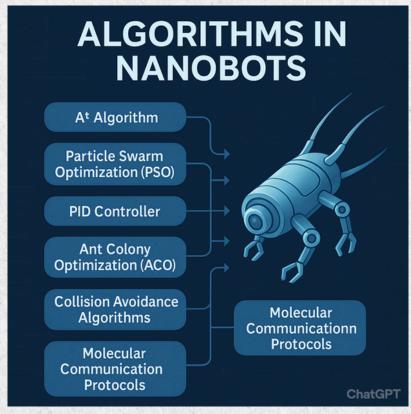
1.2 When & Who Discovered Nanobots


- Key Milestones ir Nanobet History
- 1959 Richard Feynman: Proposed the idea of manipulating matter at the atomic level.
- 1974 Norio Taniguchi: Coined the term "nanotechnology".
- 1986 K. Eric Drexler: Popularized the concept of nanobots in "Engines of Creation".
- 1990s-2000s: First experimental nanoscale machines were developed ir labs.

2. Key Principles of Nanobots

(i). Qubits - The Building Blocks

- Miniaturization Nanobots operate at the nanoscale, thousands of times smaller than a human hair.
- Precision Control They can be guided to specific cells or locations using magnetic fields, chemical signals, or AI.
- Autonomy Some nanobots can perform tasks without constant human intervention, reacting to their environment.
- Biocompatibility Must be safe and non-toxic for use inside the human body.
- Power Efficiency Often powered by chemical reactions, body fluids, or external fields, as batteries are too big.
- Swarm Behavior Multiple nanobots can work together in a coordinated manner for complex tasks.



"Nanobots: Tiny machines with huge potential."

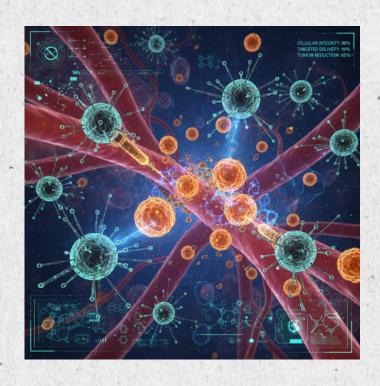
3. Algorithms Used in Nanobots

Algorithms are the guiding "brain" of nanobots, allowing them to navigate complex environments, avoid obstacles, communicate with each other, and perform precise tasks like targeted drug delivery. They ensure nanobots work efficiently, safely, and accurately, turning microscopic machines into powerful tools for medicine, industry, and technology.

>Here are the names of different Nanobots algorithms:-

- 1.A Algorithm* Helps nanobots find the shortest path to a target inside the body or micro-environment.
- 2. Particle Swarm Optimization (PSO) Coordinates groups of nanobots, letting them work together like a swarm to complete tasks efficiently.
- 3. PID Controller Controls the movement and speed of nanobots to ensure smooth and accurate motion.
- 4. Trilateration Determines the exact position of a nanobot using signals from reference points.
- 5. Ant Colony Optimization (ACO) Inspired by ants, this helps nanobots find optimal paths or targets in complex environments.

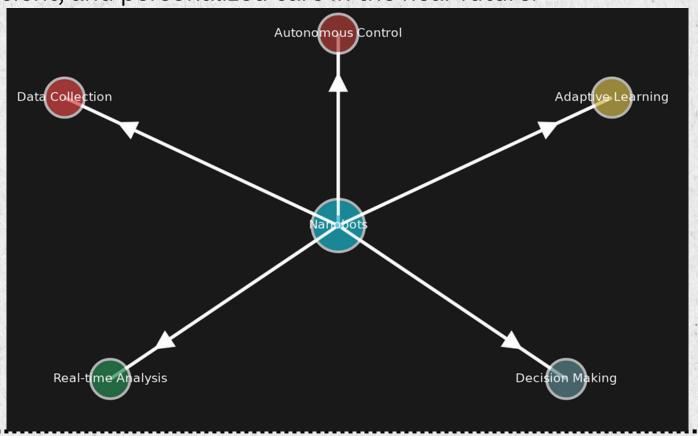
4. Some Applications of Nanobots


1.Targeted Drug Delivery

Nanobots can deliver drugs precisely to target sites, such as cancer cells, increasing treatment efficacy and reducing side effects compared to conventional therapies like chemotherapy. This enables higher localized doses with minimal damage to healthy tissues.

2.Cancer Diagnosis and Treatment

Nanobots can patrol the bloodstream to detect and directly treat tumors by delivering chemotherapy agents or bloodclotting drugs to cut off tumor nutrient supply. DNA-based nanorobots are being tested to target tumor sites with high specificity


3. Cellular Repair and Regeneration

They can perform repairs at the cellular level by identifying damaged tissues and initiating regeneration using DNA components. This may assist in reversing damage from diseases or injuries and helping conditions like paraplegia or neurodegenerative disorders

5. Nanobots in Artificial Intelligence & Machine Learning

Nanobots are tiny robots that work at the nanoscale and are becoming smarter with the help of Artificial Intelligence (AI) and Machine Learning (ML). These intelligent nanobots can move through the body, identify diseased cells, and deliver medicine precisely where it is needed, making treatments like cancer therapy safer and more effective. They can also monitor health conditions in real-time, diagnose diseases early, and assist in repairing damaged tissues with great accuracy. By combining AI's ability to analyze complex data with the tiny size and precision of nanobots, this technology is set to revolutionize healthcare and open new possibilities for personalized medicine and minimally invasive treatments.

This blend of AI and nanotechnology promises more precise, efficient, and personalized care in the near future.

6. Nanobots in Climate & Weather Prediction

Nanobots have potential applications in climate and weather prediction, though this is an emerging area of research. They could be used in environmental monitoring by collecting detailed data on atmospheric conditions at a nano-scale, providing real-time, localized information that improves forecasting accuracy. Additionally, advanced nanotechnology can contribute to more efficient computing systems that run complex climate models faster. While AI and machine learning are already making large strides in weather prediction, nanobots could enhance data collection and processing for better climate insights in the future.

7. Current Development

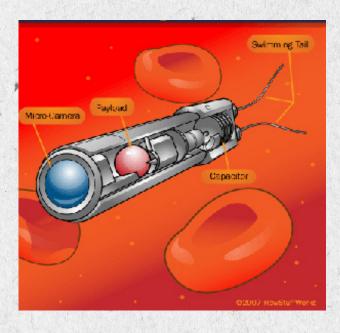
Nanobots in 2025 are making rapid strides mainly in medicine, especially for targeted drug delivery and cancer treatment. These tiny robots can directly reach and act on specific cells, reducing side effects and improving treatment effectiveness. Advanced nanobots are being tested to cut off tumor nutrient supply and cross barriers like the blood-brain barrier. The integration of AI is further enhancing their precision and adaptability for personalized therapies, marking a significant leap toward minimally invasive, highly accurate medical interventions.

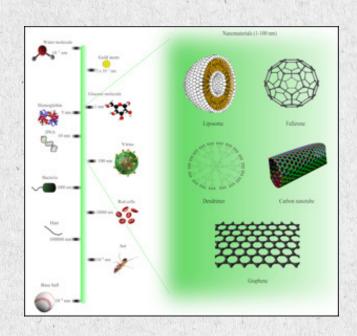
Here is a list of companies actively developing nanobots and nanorobotics technologies:

- Ginkgo Bioworks Inc. (US) Synthetic biology-driven nanorobot engineering.
- Imina Technologies SA (Switzerland) -Precision manipulation systems for nanorobotics.
- 3. Oxford Instruments Plc (UK) Tools for nanoscale imaging and nanobot fabrication.
- 4. EV Group (Germany) Equipment for nanofabrication and photolithography.
- 5. Thermo Fisher Scientific Inc. (US) Instruments and reagents for nanorobotics research.

8. Future Possibilities & Challenges:

Nanobot development faces multiple significant challenges including technical, regulatory, safety, and ethical issues. Key problems are energy supply and control mechanisms at the nanoscale, limited physical space for components, difficulties in communication and data transmission between nanobots and external controllers, and the lack of efficient propulsion systems.


Key future challenges in the nanobots field include:


- Ensuring biocompatibility and safety to avoid harmful immune reactions inside the body.
- Developing reliable real-time monitoring and control of nanobot behavior in complex biological environments.
- Overcoming technical and manufacturing hurdles for scalable, cost-effective production.
 - Addressing ethical concerns, legal responsibilities, and regulatory approvals for clinical use.
- Integrating advanced AI to enable autonomous, precise, and adaptive functions without risk.
- Managing environmental and long-term health impacts for safe deployment.

9. Ethical Concerns in Quantum Computing

Here are the key problems in nanobot development:-

- Nanoscale physical phenomena differ from macro scale, making direct scaling of designs impractical.
- High surface energy at nanoscale causes parts to stick, increasing friction and breaking risk.
- Lack of reliable nanoscale engines, power sources, and control systems limits function.
- Communication and data transmission at nanoscale are very challenging or impossible with traditional methods.
- Manufacturing processes for reproducible, stable nanobots are complex and difficult.
- Biocompatibility and safety in living systems are concerns, limiting applications.
- Current technology limits propulsion and navigation in fluid environments.
- Nanobots must be designed with minimal contact and innovative materials to overcome nanoscale adhesion.

10. Recap of Our Nano Journey

- Definition: Nanobots are tiny machines, usually measured in nanometers, designed to perform specific tasks at a microscopic scale.
- Size: So small that thousands can fit inside a human hair's width.
- Discovery: The concept was first introduced by Richard Feynman (1959) and later expanded by K. Eric Drexler (1980s).
- Key Principles: Miniaturization, precision, self-assembly, programmability, and biocompatibility.
- Uses: Medicine (targeted drug delivery, surgery, cancer treatment), environment (cleaning toxins), and technology (nanomanufacturing).
- Algorithms: Control algorithms like swarm intelligence, genetic algorithms, and pathplanning algorithms guide their movement and decision-making.
- Amazing Fact: They could one day repair damaged human cells or fight diseases directly inside the body.

11. Final Thoughts

The Nano Leap Ahead

Final Thoughts

- Transformative Potential: Nanobots could revolutionize medicine, manufacturing, and environmental solutions.
- Ethical Concerns: Privacy, safety, and environmental impact require careful attention.
- Responsible Innovation: Ongoing dialogue among scientists, policymakers, and the public is essential.
- Looking Ahead: The future of nanobots is promising but demands cautious progress

Scientists are developing nanobots so small that thousands of them could fit inside the width of a single human hair, yet they may one day travel through our bloodstream to detect and even repair diseases like cancer at the cellular level!

Student Coordinators

Shivam Mishra B.tech CSE-DS

Harshit B.tech CSE-DS

Rohit Raj B.tech CSE-DS