

#### About the Department – Vision & Mission

#### About the Department of Artificial Intelligence and Machine Learning

The Department of Artificial Intelligence and Machine Learning (AIML) at Ambalika institute of Management and Technology was established with the vision to foster future-ready professionals equipped with the tools to transform the world through data and intelligent systems. As the first-ever prestigious department, we hold the honor and responsibility of laying the foundation for all those who will follow. Our journey began not just in classrooms and labs, but in the pursuit of knowledge, innovation, and leadership. In a world driven by intelligent technologies, the AIML department aims to prepare students to be the architects of tomorrow equipped not only with technical expertise but also with ethical awareness, critical thinking, and interdisciplinary acumen. From machine learning to natural language processing, from robotics to explainable AI our curriculum reflects the pulse of global industry trends, academic excellence, and social responsibility.

#### Mission of the Department

- 1. To nurture highly skilled professionals in Artificial Intelligence and Machine Learning by providing state-of-the-art infrastructure, fostering academic excellence, and promoting innovation.
- 2.To instill ethical values, integrity, and social responsibility in students, empowering them to become responsible citizens and leaders who contribute to a sustainable and data-driven future.
- 3.To bridge the gap between academia and industry by aligning educational programs with emerging trends, fostering interdisciplinary research, and encouraging lifelong learning.

#### The First Batch Legacy

As pioneers of this department, we take pride in initiating traditions and setting standards. From participating in competitions to building projects and contributing to research, we have not only absorbed knowledge — we've created it.

We are not just learners of AI. We are the very first spark of intelligence that lights the path ahead.

#### Program Educational Objectives

#### **PEO 1:**

Graduates will be prepared to excel in diverse career opportunities in the fields of Artificial Intelligence and Machine Learning, or pursue advanced studies in leading institutions worldwide.

#### **PEO 2:**

Graduates will possess a deep understanding of the foundational principles, theories, and applications in Computer Science, with a specialization in Artificial Intelligence and Machine Learning.

#### **PEO 3:**

Graduates will demonstrate professionalism, ethical conduct, and a commitment to lifelong learning, engaging in continuous professional development to stay abreast of emerging technologies and trends in the field.

#### **PEO 4:**

Graduates will embrace a culture of lifelong learning, adapting to evolving technologies and societal needs, and contributing positively to their communities and the environment.

#### Program Outcomes

#### PO 5:

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

#### PO 6:

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

#### PO 7:

Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

#### PO 8:

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

#### PO 12:

Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### Program Specific Outcomes

#### **PSO 1:**

Apply AI and ML techniques to analyze and develop intelligent systems that solve real-world problems across various domains.

#### PSO 2:

Design and implement AI-driven solutions with ethical considerations, ensuring fairness, transparency, and societal well-being.

#### PSO 3:

Engage in interdisciplinary research, innovation, and lifelong learning to advance AI and ML technologies for global and industrial applications.

#### **Editorial Note**



Healthcare has always been one of humanity's greatest challenges—and opportunities. In the 21st century, Artificial Intelligence is emerging as a transformative force, reshaping diagnosis, treatment, drug discovery, and even patient-doctor relationships.

This section explores how AI is moving from labs to clinics, and how it may redefine what it means to heal, prevent, and cure.

# Introduction: Why Healthcare Needs AI

Global healthcare systems face immense challenges: aging populations, rising costs shortages of skilled professionals, and unprecedented crises like the COVID-19 pandemic. Traditional methods struggle to meet the demand for precision, efficiency, and speed.



At the same time, these technologies raise profound questions: Who owns Al-generated content? How do we ensure fairness and prevent misuse? What role will human creativity play in this new landscape?



- Personalized treatments
- Drug discovery acceleration
- Smart hospital management

box-shadow: 0 15px 25px 🗆 n In short, AI is not replacing doctors—it is empowering them radius: 10px;

```
.box h2{
    margin: 0 0 30px;
    padding: 0;
    color: #fff;
    text-align: center;
.box h3{
   margin: 0 0 10px;
  padding: 0;
  color: ■#fff;
  text-align: center;
```

left: 50%;

width: 400px; padding: 40px;

transform: translate(-50%,

background: □rgba(0, 0, 0, box-sizing: border-box;

## AI in Medical Imaging

Medical imaging (X-rays, CT scans, MRIs) generates massive amounts of data. Radiologists often face fatigue and time pressure.

AI-based imaging tools can:

- Detect tumors, fractures, or anomalies with high accuracy.
- Assist in early detection of diseases like cancer.
- Reduce human error.

Example: Google's AI system for breast cancer screening showed greater accuracy than human radiologists in clinical trials.

Generative AI is not limited to chatbots. It powers applications in art, healthcare, finance, gaming, and even scientific discovery. Imagine an AI that designs a new medicine, composes a symphony, or generates a video game level—all with minimal human input.

## Predictive Analytics in Healthcare



AI can analyze patient histories, genetic data, and lifestyle information to predict disease risks before symptoms appear.

- Hospitals use predictive AI to identify patients at risk of sepsis or heart failure.
- AI can model the spread of epidemics, guiding public health strategies.

This transforms healthcare from reactive to proactive.

AI can model the spread of epidemics, guiding public health strategies.

### Personalized Medicine

Traditional medicine often follows a "one-size-fits-all" approach. But every patient's biology is unique. AI helps doctors tailor treatments based on genetics, biomarkers, and lifestyle. For example:

- Oncology: AI recommends cancer treatments based on tumor DNA.
- Pharmacology: Predicts how patients respond to certain drugs.

This ensures higher success rates and fewer side effects

Beyond ChatGPT, new text-based AI tools are emerging:

- Jasper AI for marketing copy and business communication.
- Claude by Anthropic focused on safe and conversational AI.
- Perplexity AI blending AI with real-time web research.

Drug development usually takes 10–15 years and billions of dollars. AI is changing this:

- Models simulate how molecules interact with human cells.
- AI shortens the discovery phase from years to months.
- During COVID-19, AI identified potential antiviral compounds rapidly.

Pharma companies like Pfizer, Moderna, and DeepMind are using AI-driven drug pipelines.



This makes human oversight critical.
As we move forward, text-based AI won't just provide answers—it will co-write with humans, act as personal assistants



## Virtual Health Assistants & Robotics

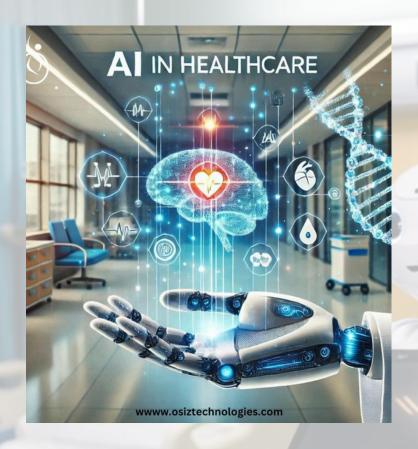
100

Virtual health assistants and robotics are AI-powered technologies transforming healthcare by providing remote patient support, assisting with clinical tasks, and improving efficiency. VHAs use NLP and machine learning for patient interaction, reminders, and data analysis, while robots perform tasks from sanitation and logistics to assisting in complex surgeries. These technologies improve diagnosis, personalize treatment, boost efficiency, and expand access to care, though challenges like data quality and ethical frameworks need to be addressed for responsible integration.

Virtual Health Assistants (VHAs)

• Patient Engagement:VHAs act as AI-powered tools that engage with patients, answer questions, provide health information, and offer support.

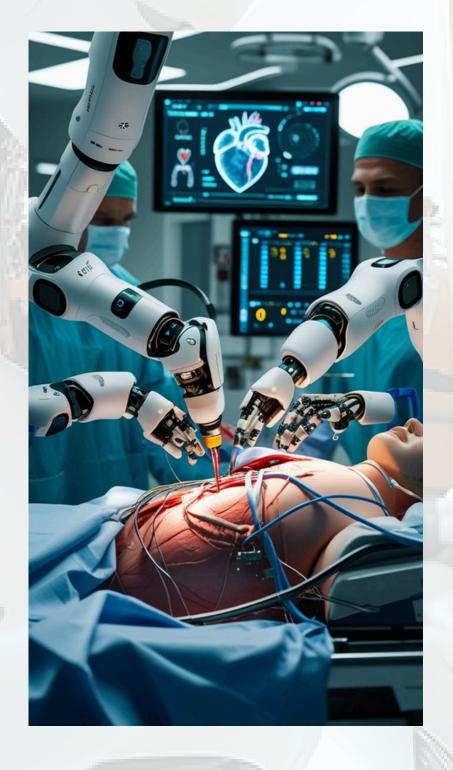
Despite these challenges, AI-driven creativity is unlocking new forms of visual storytelling. Instead of replacing human artists, many experts believe AI will act as a "creative collaborator," enabling artists to experiment in ways never before possible


Virtual health assistants and robotics are AIpowered technologies transforming healthcare by providing remote patient support, assisting with clinical tasks, and improving efficiency. VHAs use NLP and machine learning for patient interaction, reminders, and data analysis, while robots perform tasks from sanitation and logistics to assisting in complex surgeries. These technologies improve diagnosis, personalize treatment, boost efficiency, and expand access to care, though challenges like data quality and ethical frameworks need to be addressed for responsible integration. Virtual Health Assistants (VHAs)

## Challenges and Ethical Issues

Challenges in ethics involve difficulties in making the right choice between competing moral principles, while ethical concerns are specific issues like discrimination, privacy, environmental impact, and leadership misconduct that require ethical decision-making.




while OpenAI Jukebox experiments with recreating musical styles of famous artists. Musicians now use AI as a partner for composing melodies, harmonies, and even lyrics



The film industry is already exploring AI in scriptwriting, video editing, and special effects. Imagine a future where a director describes a scene, and AI instantly generates a draft visualization From background scores to movie trailers, Generative AI is not replacing human creativity but expanding the toolkit of musicians, filmmakers, and content creators

In the video domain, AI can generate short clips, create virtual influencers, and even design entire scenes for films. Deepfake technology, while controversial, has demonstrated how realistic synthetic videos can become. While it raises concerns about misinformation, it also offers possibilities for entertainment, dubbing, and accessibility.

## AUTONOMOUS AIIN DAILY LIFE



Autonomous AI appears in daily life through applications such as <u>self-driving</u> cars, smart home devices, personalized recommendation s, and AIpowered virtual assistants that automate tasks and provide personalized experiences.

• Self-driving vehicles:
Al powers
autonomous cars,
trucks, and buses
that use sensors and
machine learning to
perceive their
surroundings,
navigate complex
traffic scenarios, and
make real-time
decisions for safety
and efficiency.

For software engineers, Generative AI is proving to be a powerful ally. Tools like GitHub Copilot, Tabnine, and Replit AI assist programmers by suggesting code snippets, debugging errors, and even writing entire functions.



A PULL QUOTE IS AN IMPACTFUL QUOTE TAKEN FROM THE ARTICLE. YOU CAN PLACE THE QUOTE YOU WANT TO HIGHLIGHT HERE.

AI can also generate test cases, refactor legacy code, and translate programs between languages.



AI can also generate test cases, refactor legacy code, and translate programs between languages. In hackathons, developers use AI to prototype applications quickly, focusing on innovation rather than boilerplate coding.

However, reliance on AI raises important questions: Will future developers lose fundamental problemsolving skills? How do we ensure that AI-generated code is secure and efficient?